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SOME PROBLEMS OF THE STABILITY OF CYLINDRICAL AND CONICAL SHELLS* 

P.E. TOVSTIK 

The problem of the buckling of a membrane state of stress of a thin elastic 
shell is considered in a linear approximation. It is assumed that the 
buckling is accompanied by the formulation of a large number of dents. In 
the simplest case when the initial stresses and curvature of the middle 
surface are constant, the dents cover the whole shell surface /l-3/. If 
the quantities mentioned are not constant, the buckling pattern is comp- 
licated; localization of the dents can occur in the neighbourhoods of 
certain "weakest" lines /3-5/ or points /6/. The problem of the buckling 
of a shell of zero curvature is considered below. This is characterized. 
by the fact that the dents are stretched strongly along asymptotic lines 
and are localized near one (the weakest). The method is applicable to 
convex conical and cylindrical shells of medium length and not absolutely 
circular section: the shell edges are not necessarily plane curves. The 
two-dimensional problem reduces to a sequence of one-dimensional boundary 
value problems, while for a cylindrical shell, under certain particular 
assumptions,the approximate solution is obtained in closed form. Aconical 
shell is considered, and the changes which must be made in the case of a 
cylindrical shell are outlined. 

1. Let us introduce an orthogonal system of coordinates s,cp on the middle surface of 
a conical shell, where s =sOR-1 s" I is the distance to the apex of the cone, R isthe charact- 
eristic dimension of the middle surface, and cp is a coordinate on the directrix, selected in 
such a manner that the first quadratic form of the surface has the form du'=lP(~ +zdqq. 
Here the radius of curvature is RI = RS'. Let the shell be closed in the m direction and 
bounded by two edges (cpI is the length of the curve formed when the cone and a sphere of 
radius R with centre at the apex of the cone intersect) 

.% (cp) <s < sa (cp)? 0 d cp d ml 

We will use the set of shallow-shell equations 

e4Azw + XArw + A,@ = 0, eaAgQ, - Arw = 0 

(1.1) 

(1.2) 
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Here w’ and @’ are the normal deflection and the stress function, E, V, h are Young's 
modulus, Poisson's ratio, and the shell thickness, and e> 0 is d small parameter. The func- 
tions Ti, S are related to the initial forces T,', S' by the formulas 

Ti' = _ EhSe'Ti, S' = - Eh?.e"S (1.3) 

where b>O is the desired loading parameter. The functions k (cp) > 0, st (cp). Ti (s, cp), S (s, q) 
are assumed to be infinitely differentiable. 

2. The shell state of stress ccmprises the fundamental state of stress and a simple edge 
effect near the edges (1.1). Four homogeneous boundary conditions are given on the edges (1.1). 
but, only two conditions can be satisfied on each edge when constructing the fundamental state 
of stress. TO formulate these conditions two such linear combinations of boundary conditions 
should be compiled in which the integral's of the edge effect do not occur, just as was done, 
for instance, in (7). 

We will limit ourselves here to considering just one special case, namely, hingedclamping 

T,=v~=w=M,,=O when s=sl, s-s2 (2.1) 

where T,,,M,, are the force and momentum in a direction perpendicular to the edge, and ~1 is 
the displacement in a direction tangent to the edge. The conditions 

w=@=O when s=s,, s = St (2.2) 

should be satisfied to terms of the order of ex in constructing the fundamental state of 
stress. 

If the edge, a plane edge, is supported on a diaphragm that is rigid in its plane and 
flexible out of the plane, then the formulation of conditions (2.1) changes, while conditions 
(2.2) are conserved to the same accuracy. 

3. We will seek a solution of system (1.2) in the form 

w (5 9, e) = w* exp {is-' [q (rp - cpO) + '/~a (rp - cpO)V (3.1) 
I = I, + en,+ e%, + . . . 

(w .=~e*'*~*(&,s),E=~'a(~-rp~), Ima>O) 

where w,,(&,s) are polynomials in a and the function @ is sought in the same form (3.1). The 
number g is real and determines the variability in the go direction, the generator 9 ='pO is 

weakest, and the parameter a characterizes the rate of decrease of the dent depth with distance 
from it. 

To determine the unknown functions w,,, CD,, and the numbers q, a, (p,, A,, we substitute 
(3.1) into (1.2) and equate the coefficients of powers of e'/: to zero. It is convenient to 
express UI* first in terms of w,, by using the second equation in (1.2). We obtain 

@,=A, ~--$(&_ye-i~)+ k 
++PW*- 2t.$+hw,-+)+...], A.=.& 

Now the first equation in (1.2) yields a sequence of equations to determine 
can be wrrtten in the form 

Here 
How0 -0, Hew, + H,w, =O, H,w, + H,w, -I- Hzwe =O, . . . 

(3.2) 

W n, which 

(3.3) 

(3.4) 
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Substituting (3.1) into the condition w =0 for s = sk bd we obtain 

%(&s)=O, %(E,S)$- b.$+O 

U:*~,s)+~'++$((s~)~~ +s*+o.... 

and we have from the condition Q, =o, taking (3.2) into account, 

(3.5) 

(3.6) 

4. Let us consider the boundary value problem originating in the zeroth approximation 

H~u~,_=~~(Z~)+~~.~+I,N~~=O (4.1) 

ace 1L'o=- a88 = 0 when S=SI(C~O)~ s=s*@J) 

In addition to the fundamental parameter A, this problem still contains two parameters, 

g and cpo, and the least eigenvalue will be 

ho"= min ho (g, cp0) -ho (q”, 90~) 
PI r(* 

The following relationships should be satisfied 

Now, let 

-$$-$=O when q=qO,~=~Oo(AO=hoo) 

A 

(4.2) 

(4.3) 

denote a matrix comprised of the second derivatives of the function li,(g,tp,)for g = go, 'p. = 

moo. We assume that A is a positive-definite matrix. 
To calculate the derivatives occurring in (4.2) and (4.3), problem (4.1) can be different- 

iated with respect to the 

Under the conditions 

parameters q and- 'po. For instance - 

aHo 
Howp+-wo+ &l 

+Nwo=O, w,d&=O (4.4) 

How,++uo+~Nwo=O 

tccp+s+!E T $_s'J$=O, a% SSSl, s= y 

(4.2), problems (4.4) will be inhomogeneousproblems "in the spectrum”. 

The condition for a solution of the problem in the spectrum to exist 

Hoz+G(s)=O, Z+gok= ab” a=z + B zk=o for s=+ 

is the equation 

(4.5) 

Now Eqs.(4.2) become 

8, 

s iToG ds + ~(gok-$$+g*kqq;=o (4.6) 
81 

a. s h-Q%’ awe @Go Eo$wods+ 7(rT+ 
81 

of the elements of the matrix (4.3) we will write only the expression for im 

(4.7) 

(4.8) 

5. We will now solve the sequence of equations (3.31, taking the boundary conditions 
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(3.5) and (3.6) into account. 

where woo is the eigenfunction 

In a zeroth approximation we obtain 

wo (ET 4 = PO (8 woo (4 (5.1) 

of problem (4.1), under conditions (4.21, and PO is a function 
still not determined. To a first approximation 

(5.2) 

Because of (4.4)-(4.7), the condition for a solution to problem (5.2) to exist is equiv- 
alent to the Eqs.(4.2), from which the parameters Cp and moo were determined. Hence, in 
particular, it follows that not just any generatrix 'p. can be taken as the weakest in (3.1). 
We find from (5.2) 

ml (L s) = PI (E) woo + &PO Wq + wd - iP,‘w, (5.3) 

where wqo,,wV are solutions of problems (4.4) for wo = woo, and the function P, is still not 
determined. 

To a second approximation taking account of the boundary conditions (3.5) ,(3.61, wehave 
the following 
to exist 

equation from which We-obtain, by virtue of (416) the condition for solution mp 
Lpo = -1l,&Po' +bEP,' +(q -A,-!- 'l,b +ck) P, =O (5.4) 
b= - i (a& + L&, 2~ - ol;lqq -I- 201, + b 

The condition c = Oisnecessary forasolutionof (5.4) to"&istintheform of apolyncmial. 
Franthequadraticequation C = 0 we find auniquequantity a, sincethematrix A is positive 
definite, suchthat Ima> 0. For 

c -0, ha- (n + 91) b + n. n = 0, 1, 2, . . . (5.5) 

equation (5.4) has the solution PO al&,(i), where fl,, is a Hermite polynomial of degree n . 
The case n - O,Ii,, al is primarily of interest because the quantity I, here is minimal 
(note that b>O). 

Subsequent approximations are constructed analogously. We simply note that w,(&,s) are 
even or odd polynomials of f while the condition for We+* to exist yields 

-& + I,, p, + Fk(&) -0, k> 0 (5.6) 

where L is the operator on the left side of*(5.4) for c=o. The quantity 1, isdetermined 
from the condition for the solution (5.6) to exist as a polynomial. The evenness of thepoly- 
nomials w,,P,., Fk changes in proceeding to the next approximation; consequently I, =O for 
odd k, as noted in (3.11. 

Separating the real and imaginary parts in (3.1), we obtain that each eigenvalue (3.1) 
is asymptotically double. The shape of the deflection has the form 

w = (Re w+ ~09.2 - Im w* sin z)exp {-V. Ima~*) (5.7) 

z = e-'llp0f + Va Re ap + 0 

The method utilized here does not enable the initial phase e = const to be determined; 
it takes one of the two values 0 < 91, 0,-K 2n, and also does not enable the corresponding 
eigenvalues to be distinguished. 

If follows from the method of constructing the solution that the requirement formulated 
above for the shell to be closed in the circumferential direction is not essential. It is 
just necessary that the weakest generatrix be sufficiently remote from the rectilinear edges. 

6. Problem (4.1) has the eigenvalues ko>O if T,(s,cp)> 0 (which corresponds to com- 
pressive forces) on at least part of the shell. Let this condition be satisfied, and let S 
and Tl have the same order of magnitude as T,. Here the function w,," is real and 
It therefore follows that the forces S and T, are neither in the zeroth nor the Pi",:,"' 
approximation of the loading parameter A but only in the quantity X, (see (3.1)), to cal- 
culate which two more approximations must be constructed. 

To estimate the influence of S and T, on 1 as well as to consider the case T,<O on 
the whole shell (the internal pressure), we temporarily assume that the quantities T,, ES 
and eT1 are of identical order. This causes a change in the operators N and H, presented 
in (3.4) 

N(z)=-qz+ieq gz+2S$) 
( 

(6.1) 
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while preserving the remaining formulas presented above. For such N the boundary value problem 

(4.1) also has a real spectrum, but the eigenfunctions w0 are complex. The quantity h, 

depends on the force S, but the force T1 occurs in the quantities q and ht. 
The case T,sO, S+O is not excluded from consideration, but the case T,=SEO, 

T, + 0 is not considered because the solution has a form different from (3.1). 

7. We will now consider a cylindrical shell. Let its dimensions and shape be defined 

by the relations 
s,(cp)<s<sz(cp), O<,<cp<<cl,, doZ=R2(ds2+dCpz), RI=+& (7.1) 

where qp =2x and k (cp) sl for a circular cylindrical shell of radius R. 

The direct passage from a conical to a cylindrical shell is not so simple because slrsp+ 
cc and 'p,-eO in (1.1). However, all the formulas presented above can be utilized by 

replacing the factor s, which occurs there explicitly, by one. 
For a cylindrical shell the boundary value problem (4.1) has an explicit solution (unlike 

the case of a conical shell) for Nz = -qaT,z if T, is independent of s: 

Hence we find 
. 4~"'(W) 

'0°= ",'." 3;'~ (cp,) T,(q,,) ’ WY = 
3n'k'(cp,o) 

p (CpJ!) 

(7.2) 

(7.3) 

and the quantity b, in (3.1) is found from (5.5) for n =q 50 after the matrix h has been 
calculated by differentiating ?.. 

Note that the zeroth approximation of the critical load IO0 agrees with the value det- 
ermined by the Southwell-Papkovich formula (/3/, p.138) for a circular cylindrical shell of 
constant length Rl(cp,O) and radius R UE (fpoO)l-'. 

8. To estimate the error of the method proposed we will select a problem for which a 
numerical solution is known C/3/, p.131). We will examine the stability of a cantilever 
circular cylindrical shell of constant length L = IR subjected to an external pressure that 
is non-uniform over the circumference. In the notation used above 

T2’ = PRT,, T1 = i + a, cm v + a, cos 2~ 
S = ~(a~ sin cp + 2cr,sin 2cp), T1 = --'I# (alcoscp + 4% ces 2~) 

Let arl >O, a, >,O. Then the generatrix eo'= 0 will be the weakest. 

in (3.11, we can write the formula for the critical value of the parameter 

h Ehe?k. ela 
P= 3% L(i+a*+*) ’ k*=i+lraP 

Calculations by the formulas in Sec. 5 yield 

(8.1) 

Retaining two terms 
p in the form 

(8.2) 

(8.3) 

and the expression for the parameter k, which takes account of the inhomogeneity of the load- 
ing becomes 

AP 
from 

We will introduce again the half-wavelength of the dents in the circumferential direction 
and the parameter p which takes account of the decrease in the dent depth with distance 

the weakest generatrix. We obtain 

(8.5) 

Here the dent depths are proportional to the numbers i,e*,s* , etc. 
Utilization of (3.1) is based on the assumption of a large number of dents in the cir- 

cumferential direction. Taking account of the expressions for Ap and Y, we conclude that 
the method proposed here is suitable for medium length shells. As L increases, the quantity 

A9 grows and the accuracy of the method is reduced. 
Qualitatively (8.4) agrees completely with the results presented in /3/. In guantitave 

respects, the error in (8.4) depends substantially on the parameters of the problem. The 
least favourable Combination is Rlh=lOO, L/R = 10 for which the error reaches 15% for certain 
values of crl and cr, . As MR and LIR decrease the error decreases and does not 
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exceed 5% for R/h = 400 and LIR - 2.5. 
The buckling mode is shown in Fig. 17.4 in /3/ for R/h = 1000, WR = 10, ai - 0.5 and c(,=O. 

Dent localization in the neighbourhocd of the weakest generatrix Q@*=O is clearly seen. In 
this case, formulas (8.5) yield AQ'30.4' and p = 0.186, meaning that the dent amplitudes are 
proportional to the numbers 1, 0.83, 0.48. 0.19, 0.05 . It is seen from Fig. 17.4 in /3/ that AQ= 
3o". Note that in this case the error in (8.4) is less than 1%. 

Formula (8.4) does not take account of the initial forces Fl', S'. Their contribution 
can be estimated by means of (6.1) and (5.4). 
which takes account of terms of order 

Consequently, the term 0.181 (e, + 4q)(i -t a1 + c@Y*, 
Z in k, , is appended to the quantity k,,. 

Even functions of Q were taken as coordinate functions of the Bubnov method in/3/. 
Hence, the buckling mode constructed w (.'. 8) iS alSO an even functiOn Of Q. 

an odd mode is also possible for a load very close to critical. 
Buckling in 

9. Let us consider the problem of the buckling of a circular cylindrical medium-length 
shell with an oblique edge subjected to a homogeneous external pressure p. Let 

h(Q) = 0, 4 (Q) = i (Q) = 1. + tE 8 Goa Q (9.1) 

where fi is the slope of the edge. It is necessary to assume T,= 1, k=i in the formulas in 
Sec. 7. Then 

and the critical value of the pressure is 

4n &?k, 
P”FRr,_ 9 k*=*+0.6zq+#&-~ 

(9.2) 

(9.3) 

For .k,= i we obtain the Southwell-Papkovich formula corresponding to the maximal shell 
length, while the second term in k, takes account of the influence of the oblique edge. For 
instance, for B=45O, R/h=4CQ. and Y ~0.3 the presence of the oblique edge increases thecritical 
pressure by 14%. . 

10. The method described can also be utilized to construct the lower part of thespectrum 
for the free vibrations of a conical shell and a medium-length cylindrical shell. For a 
conical shell we must put 

hArw=-?.hw, h=+&, Nz=-SZ, H,z=O (10.1) 

in (1.2) and (3.4), where o,p are the vibration frequency and material density.Asymptotically 
the double eigenvalues of the frequency parameter b are given by 

h(n) = 5,O + e (n + l/s) b + 0 (e’), n = 0, 1, 2, . . . (10.2) 

where Xso is the eigenvalue of problem (4.1) while b is given by (5.4). 
We change to a 

case) exactly as in 
cylindrical shell (non-circular and with an oblique edge in the general 
Sec.7. We have 

li, = q’ + n’q-‘P (go), F = kl-’ (10.3) 
* 

The function F 
derivatives I,,, & 

takes the least value on the weakest generatrix Qoo. Evaluating the 

&rP = 01, we find from (10.2) and (5.4) 

ii(n) = 2n*F, [1 + 4 (n + ‘/,)ex+ (F,")'I*] f 0 (8) Fy” (10.4) 

Hence, the formula for a non-circular cylindrical 'shell of constantlength where Fo - F (QPY - 
t/0/, p-335) is obtained as a special case when z==C0Mt,II==0. Note that there iS a mis- 

print in formulas (6.23) and (6.24) in/S/: the coefficient 8 should be replaced by 2. 
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ACOUSTIC WAVE INTERACTION WITH BODIES COVERED 
BY A THIN COMPRESSIBLE LAYER* 

L.E. PEKUBOVSKII, V.B. POBUCSNIKOV, Iu. A. SOZONENKO 

The problem of acoustic wave interaction with rigid bodies on whose surface 
there is a thin compressible layer is formulated. The motion of the 
material is assumed to be quasi-two-dimensional in the layer, which results 
in a problem with special boundary condition , which generalizes the problem 
of acoustic wave diffraction by a rigid body and a cavity. The problem 
of plane acoustic wave diffraction by a sphere covered with a thin com- 
pressible layer is solved. 

1. Formulation of the Problem. Let curvilinear orthogonal coordinates in space 
define the radius-vector of the point r ($71, PI, PI). A thin layer of an ideal compressible 
fluid of variable thickness, whose outer surface is r ==r (ql,ql,a +h) where h is a function of 

qlr q1 and time t, is attached to the surface of the rigid body described by the parametric 
equation r = c (Qzr Qa, a), where a is a constant. The space outside the body and the compres- 
sible layer is filled with an ideal fluid with physical characteristics different from the 
characteristics of the layer material on the body. The reflection of a pressure wave from 
the body is investigated later. The problem under consideration arises when studying the 
diffraction by bodies with thin damping coatings that are in water when there are gasbubbles 
on their surface, and in other cases. 

In general, when a pressure wave acts on a body covered by a compressible layer, complex 
three-dimensional fluid flow occurs in the layer. Because of the thinness of the layer, it 
is natural to try to reduce the problem of the flow in alayertoaquasi-two-dimensional flow 
over a surface r = r (ql,qa, 4) /l/. Let us formulate the constraints on the conditions of the 
problemunderwhich this canbedone successfully. 
Lamg parameters H, = 1 &/8ql 1 and KS 

First,becauseofthethinnessofthelayer, the 
- 1 hf8q,I can be assumed to beindependentofthecoordinate 

qs for a<q,<a+h. It can be shown that this assumption will be satisfied with suffic- 
ient accuracy, when appropriate derivatives of r(ql, q2;qs) exist, if the following inequalities 
are satisfied 

(1.1) 

To simplify the calculations, the coordinate qs is identified with the arc-length of 
the appropriate coordinate line, i.e., it is assumed that Ha = ail@3 I 1, as always 
be by an selection the coordinate system. 

We further assume the pressure p the layer and the density p are independ- 
ent of the coordinate Qs* Introducing this assumption, we will neglect the waves in the 
direction of the normal to the surface r = r (glr Pa, 4). For the one-dimensional case, the 
validity of this assumption of proved in /l/ in an acoustic formulation for a small value of 
the ratio between the acoustic impedance of the layer material and the acoustic impedance of 
the surrounding fluid. Moreover, it is assumed, 
and in the surrounding fluid are barotropic. 

for simplicity, that the flows in the layer 

Let 4, us, Ua be components of the fluid velocity vector in the layer. It is assumed 
that the components c'~ and VI depend slightly on the coordinate qr, and we also consider 
their mean values 

s 

h 

(Vi> - + Vi dq, (is 1,2) 
0 
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