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SOME PROBLEMS OF THE STABILITY OF CYLINDRICAL AND CONICAL SHELLS "

P.E. TOVSTIK

The problem of the buckling of a membrane state of stress of a thin elastic
shell is considered in a linear approximation. It is assumed that the
buckling is accompanied by the formulation of a large number of dents. In
the simplest case when the initial stresses and curvature of the middle
surface are constant, the dents cover the whole shell surface /1-3/. If
the quantities mentioned are not constant, the buckling pattern is comp-
licated; localization of the dents can occur in the neighbourhoods of
certain "weakest" lines /3-5/ or points /6/. The problem of the buckling
of a shell of zero curvature is considered below. This is characterized,
by the fact that the dents are stretched strongly along asymptotic lines
and are localized near one (the weakest). The method is applicable to
convex conical and cylindrical shells of medium length and not absolutely
circular section; the shell edges are not necessarily plane curves. The
two~dimensional problem reduces to a sequence of one~dimensional boundary
value problems, while for a cylindrical shell, under certain particular
assumptions, the approximate solution is obtained in closed form. A conical
shell is considered, and the changes which must be made in the case of a
cylindrical shell are outlined.

1. Let us introduce an orthogonal system of coordinates s, ¢ on the middle surface of
a conical shell, where s=s’R™,5° is the distance to the apex of the cone, R is the charact-
eristic dimension of the middle surface, and @ is a coordinate on the directrix, selected in
such a manner that the first quadratic form of the surface has the form do® = R? (ds* + s*dg?).
Here the radius of curvature is R, = Rsk™. Let the shell be closed in the ¢ direction and
bounded by two edges (@, is the length of the curve formed when the cone and a sphere of
radius R with centre at the apex of the cone intersect)

S @< @, 0o ® (1.1)

We will use the set of shallow-shell equations

AW + M + AD =0, A0 — Aw =0 (1.2)

%prikl.Matem. Mekhan ,47,5,815-822,1983
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Here w’ and O’ are the normal deflection and the stress function, E, v, h are Young's
modulus, Poisson's ratio, and the shell thickness, and &> 0 is a small parameter. The func-
tions T, § are related to the initial forces T, §' by the formulas

T,/ = — Eh)e*T;, §' = — Eh)e'S ' (1.3)

where A >-0 is the desired loading parameter. The functions k(@) >0, s; (¢), Ti (s, 9), S (s, @)
are assumed to be infinitely differentiable.

2. The shell state of stress comprises the fundamental state of stress and a simple edge
effect near the edges (1.1). Four homogeneous boundary conditions are given on the edges (1.1),
but, only two conditions can be satisfied on each edge when constructing the fundamental state
of stress. To formulate these conditions two such linear combinations of boundary conditions
should be compiled in which the integrals of the edge effect do not occur, just as was done,
for instance, in (7).

We will limit ourselves here to considering just one special case, namely, hinged clamping

In=v,=w=M,=0 when s=3g, §s=35 (2.1)

where T,, M, are the force and momentum in a direction pexrpendicular to the edge, and v; is
the displacement in a direction tangent to the edge. The conditions

w=0=0 when s=3, s=3 (2.2)

should be satisfied to terms of the order of e® in constructing the fundamental state of
stress.

If the edge, a plane edge, is supported on a diaphragm that is rigid in its plane and
flexible out of the plane, then the formulation of conditions (2.1) changes, while conditions
(2.2) are conserved to the same accuracy.

3. We will seek a solution of system (1.2) in the form

w (s, 9, ) = w, exp {ie”! lg (9 — @) + Vs (p — 9o)?]} (3.1
A=Ay ek, F % + ...

(wy= ée"/“w,‘(ﬁ,s).i‘:r'/’(q? — @o), Ima>0)

where wy(k,s) are polynomials in § and the function ® is sought in the same form (3.1). The
number g is real and determines the variability in the ¢ direction, the generator ¢ =g, is
weakest, and the parameter a characterizes the rate of decrease of the dent depth with distance
from it.

To determine the unknown functions w,, ®, and the numbers g, a, @, A,, we substitute
(3.1) into (1.2) and equate the coefficients of powers of ¢'t to zero. It is convenient to
express @, first in terms of w, by using the second equation in (1.2). We obtain

_ wy _ 4el . Owg (3.2)
0, =, [ — L (atw, — i 52 +

5 (oo, 5w ) 4] nm

Now the first equation in (1.2) yields a sequence of equations to determine w,, which
can be written in the form

Hw, =0, Hw, + Hwy, =0, Hw,; + Hw, + Hw, =0, ... (3.3)
Here

A2
an-=—ks-é—‘—z+%z+koNz, Nz=—-q:?—z (3.4)

aH, , H, H, & . 08 a;
les(a-gq—"—l-—sw—")iz—t—a;'l—a—é-, H,,z::zkaq(—és—z—r&?-rx)

1 3 _OtHy 2 O%Hy 62H0> 20 .
sz=—2—(a 7@ + 2a aqaq;'*' prs g2
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; otH, 02H, 0z i &H, /. a2z i 0%H,
(o + 2m )V — T (B ) = T g ¢ Har bl

Substituting (3.1) into the condition w =0 for s =g, (¢) we obtain

, 0
we 38 =0, w5+ G = (3.5)
i) g2 ne O , O
ws (&, 5) + & - zwya?+ "w_au.
and we have from the condition d = 0, taking (3.2) into account,

0w, =0 Py + ts e Pw, =0 (3.6)
s LT e
63w.; ’ aaw, 6'1470 a’wo 4is' wp
ds® + & 53 <( 5P = T 53’) o8 "

4. Let us consider the boundary value problem originating in the zeroth approximation

2 a2
Hoawo = K ;(‘Po) (8’ aa’::o)+ ;’;'u'o+kono=O (4.1)

2
71«'0-——;{.— =0 vhen s=s1(g0), s=33(Pv)

In addition to the fundamental parameter A, this problem still contains two parameters,
g and ¢, and the least eigenvalue will be

Ao® == min Ao (g, Qo) = Ao (3%, Po°)
q, Ge

The following relationships should be satisfied

[2)
-{;—’“'L 320 == 0 when ¢=2¢° @o=@o® (Ao =Ac") (4.2)
Now, let
Agq A,
A= 9 wﬂ 4.3)
Mg Mg

denote a matrix comprised of the second derivatives of the function X, (g, @p)for ¢ =¢° ¢, =
¢,°. We assume that A is a positive-definite matrix.

To calculate the derivatives occurring in (4.2) and (4.3), problem (4.l1) can be different-
iated with respect to the parameters g and Q- For instance

P
Howq-]- 3;:., wo+%NWo=0, quT':iL=o (4.4)
How,,,-(—%-y—“wo+7—hwo=0

» 0wy

uq,+s——_-T—+ T‘=O §=8, S==8

Under the conditions (4.2), problems (4.4) will be inhomogeneous problems "in the spectrum".
The condition for a solution of the problem in the spectrum to exist
a2,
He+G()=0, z+gn= 7+ gu=0 for s=sg (4.5)

is the equation

. k253 8D,
S u'oG ds -+ T (gnk 6:’ + 82 ;; ) " == 0 (4.6)
Now Egs. (4.2) become '
Sﬁo-%lg—“WodS==0 (4.7)

L
8

o st 22 (323 2500

81

Of the elements of the matrix (4.3) we will write only the expression for }."

quSwonods+Swo 2-3—3—'w.,+-3Fwo>ds=0 (4.8)

5. We will now solve the sequence of equations (3.3), taking the boundary conditions
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(3.5) and (3.6) into account. 1In a zeroth approximation we obtain
wy (8, 8) = P, (§) wo” (5) (5.1)

where w,’ is the eigenfunction of problem (4.1), under conditions (4.2), and P, is a function
still not determined. To a first approximation

How1+L§Po<a%+%)*ipo'?%‘]wo°=o (5.2)

: ,Owg , 0
wy + §Pos -;:"=—;;,l + EPys %w'?-=0 for s=3,
Because of (4.4)-(4.7), the condition for a solution to problem (5.2) to exist is equiv-
alent to the Egs.(4.2), from which the parameters ¢* and ¢, were determined. Hence, in
particular, it follows that not just any generatrix ¢, can be taken as the weakest in (3.1).

We find from (5.2)
wy (&, 5) = P, (B) we® + &P, (aw, + wy) — iPy'w, (5.3)

where w,, w, are solutions of problems (4.4) for w, =w,’, and the function P, is still not
determined.
To a second approximation taking account of the boundary conditions (3.5),(3.6), we have
the following equation from which we obtain, by virtue of (4.6) the condition for solution w,
to exist LPy = —YhgoPy" 4 BEPy 4 () — Ay + Y3 + c8%) Py =0 (5.4)
= — i (@hgg + Age)y 2¢ = aPhyy -+ 2akyy + Ago

83 L]
i — g @ —
) -.=-2Lz—{s (wo° -a-g!- W — Wo® —%"—w,,) ds — 2i S Wo"H ywo® ds 4
17} n
WY [ dw® BB dBS dhwyd \ | ¢
7 (F ) == (e
The condition ¢ =0 is necessary for a solutionof (5.4) to ‘éxist in the form of a polynomial.
From the quadratic equation ¢ == 0 we find aunique quantity a, since thematrix A is positive
definite, such that Ima > 0. For

c=0, M=@m+Y)b+n n=01,2 .. (5.5)

equation (5.4) has the solution P, = H,(E), where H, is a Hermite polynomial of degree n .
The case n =0, H, =81 is primarily of interest because the quantity Ay here is minimal
(note that b > 0).

Subsequent approximations are constructed analogously. We simply note that w, (§, s) axre
even or odd polynomials of £ while the condition for Wrey tO exist yields

LPy + %Py + F, (}) =0, k>0 (5.6)

where L is the operator on the left side of (5.4) for ¢ =0. The quantity A, is determined
from the condition for the solution (5.6) to exist as a polynomial. The evenness of the poly-
nomials w,, Py, Fy changes in proceeding to the next approximation; consequently ), =0 for
odd k, as noted in (3.1).

Separating the real and imaginary parts in (3.1), we obtain that each eigenvalue (3.1)
is asymptotically double. The shape of the deflection has the form

w = (Re w, cos z — Im w, sin z) exp {—Y, Im a}?} (5.7)
z =gt + Y, Real® + 0

The method utilized here does not enable the initial phase 8 = const to be determined;
it takes one of the two values 0< 8, 8, <<2n, and also does not enable the corresponding
eigenvalues to be distinguished.

If follows from the method of constructing the solution that the requirement formulated
above for the shell to be closed in the circumferential direction is not essential. It is
just necessary that the weakest generatrix be sufficiently remote from the rectilinear edges.

6. Problem (4.1) has the eigenvalues 4, >0 if T, (s, ¢)> 0 (which corresponds tc com-
pressive forces) on at least part of the shell. Let this condition be satisfied, and let S
and T, have the same order of magnitude as T,. Here the function w," is real and 7 =0.
It therefore follows that the forces S and T, are neither in the zeroth nor the first
approximation of the loading parameter A but only in the quantity 3, (see (3.1)), to cal-
culate which two more approximations must be constructed.

To estimate the influence of S and T, on A as well as to consider the case T,<{0 on
the whole shell (the internal pressure), we temporarily assume that the quantities T, e§
and eTl, are of identical order. This causes a change in the operators N and H, presented
in (3.4)

N(z)=—%ﬁz+ieq(%—z+2s-§;) (6.1)
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Hyz=c¢ [%(sﬂ' _

while preserving the remaining formulas presented above.For such N the boundary value problem
(4.1) also has a real spectrum, but the eigenfunctions w, are complex. The quantity Ay
depends on the force S, but the force T, occurs in the quantities % and A,.

The case T,=0, S0 is not excluded from consideration, but the case T,=8=0,
T,%=0 is not considered because the solution has a form different from (3.1).

7. We will now consider a cylindrical shell. Let its dimensions and shape be defined

by the relations R

k(9)

where ¢, =2n and k(p)==1 for a circular cylindrical shell of radius R.

The direct passage from a conical to a cylindrical shell is not so simple because s, s, —
oo and ¢, — 0 in (1.1). However, all the formulas presented above can be utilized by
replacing the factor s, which occurs there explicitly, by one.

For a cylindrical shell the boundary value problem (4.1) has an explicit solution (unlike

s (@) <82 (9)s 0 o< qe, do?a=R2(ds*+ dg?), Ry= (7.1)

the case of a conical shell) for Nz = — ¢*Tez if T, is independent of s:
. — 2 Kans
wo==sm-—n-(i—l—(%%l, =35y — 8, )'°=’1L‘.,+'T—,I‘T (7.2)
Hence we find
.4k (o) 3n%ic? (o)
Ao? = min —p—— | LI L L 7.3
’ o 37 (o) T2 (o) (@) K (g { )

and the quantity 4, in (3.1) is found from (5.5) for n =19 = () after the matrix A has been
calculated by differentiating A,

Note that the zeroth approximation of the critical load A, agrees with the value det-
ermined by the Southwell-Papkovich formula (/3/, p.138) for a circular cylindrical shell of
constant length Rl (9,%) and radius R [k (g%

8. To estimate the error of the method proposed we will select a problem for which a
numerical solution is known (/3/, p.131). We will examine the stability of a cantilever
circular cylindrical shell of constant length L =R subjected to an external pressure that
is non-uniform over the circumference. In the notation used above

T, = pRTy, Ty=1 4 a1 cos @ + a4 cos 2¢ (8.1)
= 5 (o 8in @ + 20 sin 29), Ty = —Uys? (o cos @ + 4o, cos 29)

Let @, >0, >0 Then the generatrix ¢°=0 will be the weakest. Retaining two terms
in (3.1), we can write the formula for the critical value of the parameter p in the form

4n Ehetk ehe
3 L(1+a,-‘+-a,.) » k=145 (8.2)

2=

Calculations by the formulas in Sec. 5 yield
i " . a3~/ — 8ai
s=7 Mo+ 4" M=TaTaTai M= Tftata (8.3)

and the expression for the parameter %, which takes account of the inhomogeneity of the load-
ing becomes

oy + by 1/2 A3Le s
k‘=i+0‘624(1+a1+a.,) Y, ys(m) (8.4)

We will introduce again the half-wavelength of the dents in the circumferential direction
Ap and the parameter p which takes account of the decrease in the dent depth with distance
from the weakest generatrix. We obtain

e Appl 2
89 = = 1.132, p=.-‘—‘”2s-—“‘“_=o.513<—14'ﬁ-"—_:”‘;)’g (8.5)

Here the dent depths are proportional to the numbers {, ¢®, ¢% , etc.

Utilization of (3.1) is based on the assumption of a large number of dents in the cir-
cunferential direction. Taking account of the expressions for A¢ and y, we conclude that
the method proposed here is suitable for medium length shells. As L increases, the guantity

Agp grows and the accuracy of the method is reduced.

Qualitatively (8.4) agrees completely with the results presented in /3/. 1In gquantitave
respects, the error in (8.4) depends substantially on the parameters of the problem. The
least favourable combination is R/h = 100, L/R = 10 for which the error reaches 15% for certain
values of a; and @ . As kR and L/R decrease the error decreases and does not
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exceed 5% for R/A=400 and L/R=25.

The buckling mode is shown in Fig. 17.4 in /3/ for R/ =1000, L/R=10, 0 =05 and aq,=0.
Dent localization in the neighbourhood of the weakest generatrix ¢,°=0 is clearly seen. In
this case, formulas (8.5) yield Ag=38.4° and p=0.8, meaning that the dent amplitudes are
proportional to the numbers 1, 0.83, 048, 0.19, 0.05 . It is seen from Fig. 17.4 in /3/ that Ap =
30°. Note that in this case the error in (8.4) is less than 1%.

Formula (8.4) does not take account of the initial forces 7y, §'. Their contribution
can be estimated by means of (6.1) and (5.4). Consequently, the term 0.481 (m -+ 4ag)( -+ @ + agly?,
which takes account of terms of order e in ,, is appended to the quantity k,.

Even functions of ¢ were taken as coordinate functions of the Bubnov method in /3/.
Hence, the buckling mode constructed w(s, ¢ is also an even function of ¢. Buckling in
an odd mode is also possible for a load very close to critical.

9. Let us consider the problem of the buckling of a circular cylindrical medium-length
shell with an oblique edge subjected to a homogeneous external pressure p. Let

1@ =0 s{®=I(@@=1+tgPcose {9.1)

where B is the slope of the edge. It is necessary to assume T,=1, k=1 in the formulas in
Sec. 7. Then

4n 3nt
@’ =0, M°=—3.7‘-t:, (q“)’:-To;—, lo=14+tgP (9.2)
4ntgp

’-"316, A’W=0’ AW:W
and the critical value of the pressure is

4n  Ehebk,

=R k,=1+0.6%(( (9.3)

Mgt )'/.

For k=1 we obtain the Southwell~Papkovich formula corresponding to the maximal shell
length, while the second term in &, takes account of the influence of the oblique edge. For
instance, for B=45° R/A =400, and v = 0.3 the presence of the oblique edge increases the critical
pressure by 14%.

10. The method described can also be utilized to construct the lower part of the spectrum
for the free vibrations of a conical shell and a medium~length cylindrical shell. For a
conical shell we must put

Mow = — hw, x=%, Nz=—sz, Hoiz=0 {l0.1)

in (1.2) and (3.4), where g@,p are the vibration frequency and material density.Asymptotically
the double eigenvalues of the frequency parameter A are given by

AW = A0 +e(n+Y)b+0@E) n=0102,.. (10.2)

where &, is the eigenvalue of problem (4.l1) while b is given by (5.4).
We change to a cylindrical shell (non-circular and with an oblique edge in the general
case) exactly as in Sec.7. We have

by = ¢t 4 P (o), F =k (10.3)

The function F takes the least value on the weakest generatrix ¢,°. Evaluating the
derivatives Ay, Apy (Ayp =0), we find from (10.2) and (5.4)

M = 2a3F, [ + 4 (n + Vea* (Fy")'s} + O (82) FL"* (10.4)

where F, = F(9,®) . Hence, the formula for a non-circular cylindrical shell of constant leangth
(/8/, p.335) is obtained as a special case when [ =const,n =0 . Note that there is a mis~
print in formulas (6.23) and (6.24) in /8/: the coefficient 8 should be replaced by 2.
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ACOUSTIC WAVE INTERACTION WITH BODIES COVERED
BY A THIN COMPRESSIBLE LAYER*

L.E. PEKUROVSKII, V.B. PORUCHNIKOV, Iu. A. SOZONENKO

The problem of acoustic wave interaction with rigid bodies on whose surface
there is a thin compressible layer is formulated. The motion of the
material is assumed to be quasi-two-dimensional in the layer, which results
in a problem with special boundary condition, which generalizes the problem
of acoustic wave diffraction by a rigid body and a cavity. The problem

of plane acoustic wave diffraction by a sphere covered with a thin com-
pressible layer is solved.

1. Formulation of the Problem. Let curvilinear orthogonal coordinates in space
define the radius-vector of the point r (g, g ¢s)c A thin layer of an ideal compressible
fluid of variable thickness, whose outer surface is r ==v (g, ¢y, @ -+ k) where h is a function of

¢, g; and time t, is attached to the surface of the rigid body described by the parametric
equation r =r (g, ¢, a), where a is a constant. The space outside the body and the compres-
sible layer is filled with an ideal fluid with physical characteristics different from the
characteristics of the layer material on the body. The reflection of a pressure wave from
the body is investigated later. The problem under consideration arises when studying the
diffraction by bodies with thin damping coatings that are in water when there are gas bubbles
on their surface, and in other cases.

In general, when a pressure wave acts on a body covered by a compressible layer, complex
three~dimensional fluid flow occurs in the layer. Because of the thinness of the layer, it
is natural to try to reduce the problem of the flow in alayer to a quasi-two-dimensional f£flow
over a surface * = r (¢, ¢y, @) /1/. Let us formulate the constraints on the conditions of the
problem under which this can be done successfully. First, because of the thinness of the layer, the
Lamé parameters H, = |dr/dq,| and H, = | de/dg, | can be assumed to be independent of the coordinate

gs for a<{gy<a-+h It can be shown that this assumption will be satisfied with suffic-
ient accuracy, when appropriate derivatives of v (g, g, gs) ©xist, if the following inequalities
are satisfied

aHi (QIv g2, a) h(q + G ot) :
— | gt =2 (1.1)

To simplify the calculations, the coordinate g, is identified with the arc-length of
the appropriate coordinate line, i.e., it is assumed that Hy = | d¢v/0g3 | =1, as can always
be done by an appropriate selection of the coordinate system.

We will further assume that the pressure p in the layer and the density p are independ-
ent of the coordinate gs- Introducing this assumption, we will neglect the waves in the
direction of the normal to the surface r =r (g, ¢y a). For the cne-dimensional case, the
validity of this assumption of proved in /l/ in an acoustic formulation for a small value of
the ratio between the acoustic impedance of the layer material and the acoustic impedance of
the surrounding fluid. Moreover, it is assumed, for simplicity, that the flows in the layer
and in the surrounding fluid are barotropic.

Let vy, Uy, Uy be components of the fluid velocity vector in the layer. It is assumed

that the components v; and vy depend slightly on the coordinate gs » and we also consider
their mean values

"
D) ='71:_“§ vidgs (i=1,2)
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